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Scaling theory of antiferromagnetic Heisenberg ladder 
modeis 

Naomichi Hatanot and Yoshihiro Nishiyama 
Depamnent of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113. Yapan 

Received 4 April 1995 

Abstract. The S'  = I f 2  antifemmagnetic Heisenberg model an multi-leg ladders is 
investigated. Criticality of the ground-state transition is explored by means of finite-size scaling. 
The ladden with an even number of legs and those with an odd number of legs are distinguished 
clearly. In $e former, the energy gap opens up as A E  - 31, where 3~ is the strength of the 
antiferromagnetic inter-chain coupling. In the latter, the critical phase with the central charge 
e = I extends over the whole region of JL =-bo. 

1. Introduction 

Understanding of the ground-state criticality of one-dimensional quantum system has been 
enriched greatly in the past decade. One of the important breakthroughs was finite-size 
scaling based on the conformal field theory [I]; see [2] for a review. Nowadays many 
attempts at generalization for higher-dimensional systems are in progress. One of them 
is the study of coupled chains. The Heisenberg ladder models are particularly of interest. 
The two-dimensional Heisenberg model might be explored as the limiting case of the ladder 
models. In addition, actual substances which realize the ladder models have been developed 
experimentally: S I % - ~ C U ~ ~ O ~ ~ - ~ .  for example 131. 

The Hamiltonian of the S = 1/2 Heisenberg ladder models is given by 

H = 7.11, + 7.1mg (1.1) 
where 

L-I ",-I 

x=o y=1 
7.1mg E JL S,, . S,,,+I. 

In the present paper we treat the antifemomagnetic case, J > 0 and JL > 0. Each component 
of the spins is defined by 

where [d'] are the Pauli matrices. We define S* E S'fiSJ'. We impose pekiodic boundary 
conditions only in the x direction: 

SL,, = for y =.1,2 ,..., nr. (1.5) 

S' = 40" ( E L = x , y , z )  (1.4) 

i Present address: Lyman Laboratory of Physics, Harvard University. Cambridge, Massachusetts 02138. USA. 
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Hereafter the system size L is even. 
In the present paper, we focus on the ground-state criticality of the ladder models. It 

was conjectured [4] that the ladder models with even n1 and those with odd n1 behave quite 
differently from each other; for JI = 1, the former is massive, while the latter is massless. 
Here we discuss the criticality for arbitrary positive J L  and for general nl. 

It is well known that the antiferromagnetic Heisenberg chain ( J l / J  = 0) is massless 
151. Many questions arise when we introduce the inter-chain coupling ‘Hmng: for example, 
it has been quite controversial [6-9] whether the system with nr = 2 becomes massive for 
any positive JA or whether there exists a critical point at a finite value of JL; it has not been 
clarified whether the massless phase for odd nl extends over the whole region of JI w 0 
or whether a massive phase exists in the region 0 c J I  c 1; and the universality of the 
massless phase has not been discussed. 

The purpose of the present paper is to answer the above questions on the basis of finite- 
size scaling theory. We introduce our scaling ansatz in section 2.1. The ansatz yields useful 
conclusions immediately. In particular, we conclude that the whole region of J l  > 0 is 
controlled by the stable fixed point at J s / J  = W. Thus we distinguish the systems with 
even nl and those with odd nI clearly: the former is massive for any Js, while the latter 
is critical with the central charge c = 1 for any J l .  We present some results for even nl 
and for odd n1 in sections 2.2 and 2.3, respectively. We particularly show the estimation of 
critical amplitudes. We give numerical confirmation of the scaling ansatz in section 2.1. In 
addition to that, we confirm the ansatz by means of perhlrbation theory in section 3. 

2. Finite-size scaling of the energy gap 

In this section, we introduce the finitesize scaling form of the energy gap. We numerically 
confirm the scaling ansatz. We present ow conclusions drawn from the ansatz. 

2.1. General arguments 

The central scaling ansatz of the present paper is written in the form 

L JL with x - 
J 

AE(L) E -A@) J .  =JAY i ( X )  
L 

where AE is the energy gap between the ground state and the first excited state, and 
denotes the relevant scaling function. We show, in figure 1, numerical data obtained hy the 
Lanczos method [lo]. The data are scaled well over a finite region of x (namely 0 < x < 5) 
for nl = 2.4, and over the whole region of x for n1 = 3. We confirm the scaling form (2.1) 
by means of perturbation theory in section 3. 

The ansatz (2.1) implies that the inter-chain coupling is a relevant operator. The coupling 
XmDg drives the system away from the point J l / J  = 0, and makes the system renormalized 
to the limit JA/J  + M as L + 00; see figure 2. Thus the fixed point at JS/J = M 

controls the whole phase of the region .IS z 0. Apart from a correction to scaling, the 
thermodynamic liiit  L +, M is equivalent to the limit J A / J  + W. 

We can thereby understand the difference between the systems with even nl and those 
with odd nr. For even nr, the spins on each rung form an S = 0 singlet in the limit 
J I / J  + CO. The system at the fixed point J l / J  = 00 is the S = 0 chain with the energy 
gap of the order of JL [ll]. For odd nr. on the other hand, the spins on each rung form 
an S = 112 doublet in the limit J L / J  + CO. In the first-order perturbation of J ,  we have 
the same energy spectrum as of the S = 112 Heisenberg chain (see section 2.3 for details). 
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Figure 1. Scaling plot of numerical data for 
the JL dependence of the energy gap. The 
abscissa i s  scaled as x = LJLJJ,  while the 
ordime is ruled as LAEIJ: (U) tu = 2, 
4 4 L 6 12; (b) y = 3, 4 4 L < 8; (c) 
n, =4,4 4 L < 6. 

Hence the system at the fixed point J I / J  = 00 is the S = 1/2 Heisenberg chain, which is 
massless, or critical. Thus the whole phase of JJ. z 0 for even (odd) n, is controlled by 
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Figure 2. The conjectured renornulization-flow diagram for the Heisenberg ladders. The fixed 
point 3~ fJ = 0 is unstable with respect to the inter-chain coupling. The stable fixed point at 
J l / J  = m is described by the massive S = 0 chain for even nf, and by the massless S = 112 
chain for odd ni. We thereby conclude that the whole phuse of JL > 0 is massive for even nr 
nnd is critical for odd ni. 

the massive S = 0 (massless S = 1/2) Heisenberg chain. 
In order to argue asymptotic behaviour for the scaling function L ( x ) ,  we can exploit 

the two limits J L / J  + 00 and L -+ w. In the thermodynamic limit L -+ w, we must 
have a non-divergent value for the energy gap. Hence the scaling function &x) in (2.1) 
must be of the first or lower order of x in the limit x + W. We then postulate that the 
asymptotic form differs for even nr and for odd nf as follows: 

asx+w. 
for odd nl 

&x)  - 
Here A and b are appropriate constants. We can derive this from the behaviour of the 
energy gap in the limit J L / J  + w. For even nl, a first excited state is created by exciting 
one of the S = 0 singlets on the rungs. The energy gap to this state is proportional to JL: 
AE Y JL&(x)/x JL. Therefore we should have &x) - x .  For odd ni. the energy gap 
for the first excited state is that of the S = 1/2 Heisenberg chain, and hence. is proportional 
to J / L :  A E  N (J /L)&x)  a J / L .  This yields L(x) - constant. The above postulate 
(2.2) is actually observed in the numerical data in figure 1. 

2.2. Ladders with an even number of legs 

According to the above ansatz (2.2), we have i\(x)/x + A as x + 03 for even ni. Hence 
in the thermodynamic l i t  L + 00, the scaling form (2.1) is reduced to 

AE Y AJL” with U = 1. (2.3) 
The coefficient A defined in (2.2) turns out to be the critical amplitude. Thus the critical 
system at J l / J  = 0 (namely, a set of independent Heisenberg chains) becomes massive 
immediately when we turn on the inter-chain coupling. The critical-point estimate J L / J  = 0 
and the exponent estimate U = 1 were concluded previously [8,9]. 

Let us estimate the critical amplitude A for nl = 2. We utilize the following general 
finite-size scaling form for onedimensional quantum ground-state phase transitions [U]: 

A x  + D+e-” in the disordered phase 

at the critical point (2.4) -- LAE(L)  

J - [E-e-cx in the ordered phase. 
Here x = Ll&l” denotes the relevant scaling variable with E being the distance from the 
critical point; x = L J l / J  in the present case. The coefficient A gives the critical amplitude 
in (2.3). The coefficient C, on the other hand, gives the critical amplitude of the correlation 
length: 

A / C  = U, (2.5) 

Y C(JI / J )” .  We introduced in [12] the amplitude relation 
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where us is the sound velocity. The coefficient B is predicted from conformal field theory 
as 5 = u,nq, where q is Fisher's correlation exponent [13]. For the Hamiltonian (1.1) with 
J L / J  = 0, the Bethe-ansatz solution [I41 gives 

(2.6) I q = 1  and U, = ?TI 

A n  TI2 

2 
_ = _ =  1.570796.. . 
c 2  

hence we have 

and 5 = - 4.934 802.. . . (2.7) 

The coefficients D+ and D- may have weak x dependence [14. 
The asymptotic behaviour in (2.2) for even nt is consistent with the scaling form (2.4) 

in the disordered phase. We can employ our previous analysis in [12], where we showed 
for the one-dimensional quantum Potts model that a good estimator of the amplitude A is 
given by 

(If the data followed the scaling form (2.4) completely, the quantity LAE/(Jx)  would 
converge to A exponentially as x -+ CO. However, there appears a minimum in practice, 
probably because of some correction to scaling [12].) The estimator (2.8) may converge to 
A exponentially [I21 in the form " 

(2% 
We calculated AP for the data in figure I@), and fitted the results to the form (2.9); see 
figure 3. We thereby have the estimate A = 0.47(1) and hence 1/C = u, /A  = 3.34(7).for 
nl = 2. (The error in the estimate A was evaluated through leastsquares fitting to the form 
(2.9).)'Namely, we have 

Am'" - - A + CI exp(-c&). 

(2.10) 

as & + CO and near~J1I.I - 0. These explain the following estimates in [4] quite well: 
AE = 0.5043 and $ = 3.19(1) for n1 = 2 and J L / J  = 1. Although it is unnecessary 
that the critical behaviour (2.10) near J J J  - 0 is observed even for J L / J  = 1, we see in 
figure 2 of [7] that the correction to (2.10) may be quite small in the region J J J  < 1. 

Incidentally, the energy gap is AE = JL for n1 = 2 in the limit J J J  + CO, where the 
system is reduced to a set of independent dimers. A crossover from the behaviour (2.10) 
to the behaviour AE = JL may occur in the region J L / J  > 1. 

If we naively apply the same analysis as above to the data for nt = 4 with L = 2, 4 
and 6, we obtain the tentative estimates 

J 
AE N 0.4751 and ' 6 N 3.34- 

JL 

~ ~~ A N 0.27 and C-' = u, /A N 5.8. (2.11) 
Though there may be some errors in these estimates, the values (2.10) and (2.11) are fairly 
consistent with the scaling hypothesis 6 x nt [4]. 

2.3. Ladders with an odd number of legs 

 for odd nt, we can see in figure 1 that the scaling region is quite wide. We may naturally 
assume that the scaling form (2.1) with (2.2) is valid for any value of L and J L / J .  Thus 
we .have the following remarkable conclusion: for any positive JL, the energy gap in the 
thermodynamic limit L -+ CO behaves as ~. 

AE b 
J L  

- N -  (2.12) 
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amplitude A for nl = 2 as was done 
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where the amplitude b is the coefficient defined in (2.2). Note that this amplitude is 
independent of J L  by definition. In other words, the energy spectrum in the thermodynamic 
limit for any positive JL is identical to that for J l / J  -+ CO, or the spectrum of the S = 1/2 
antiferromagnetic Heisenberg chain. We thus conclude that the whole phase of JJ. > 0 for 
odd n( is a critical phase with the central charge c = 1. Note that the central charge is 
c = nr for J L / J  = 0, because we have nl systems of c = 1 at this point. 

We can obtain the value of the amplitude b by considering the limit J A / J  + CO. For 
this purpose, we first describe how to obtain explicitly the effective Hamiltonian of the 
S = 112 Heisenberg chain in the limit J l / J  + CO. 

In the very limit of J J J  = 03, or J / J L  = 0, the Hamiltonian is reduced to 'Hmns; 
the rungs are independent of each other. The ground state of the whole system is the 
direct product of the ground state of each rung. On each rung, an odd number of spins 
are coupled with the antifemmagnetic interaction Jl. Hence two ground states of each 
rung are degenerate with S = 112 and S' = f1/2. We express the states on the nth rung 
as I+=) and I-=). The ground states of the whole system have 2'-fold degeneracy. This 
degeneracy is lift up in the first-order perturbation of J / J L ,  or Hleg. We calculate the 
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first-order perturbation for degenerate states by writing down the secular equation: 

I f i - h f l  = O .  (2.13) 

Here the matrix f denotes the identity operator. The first-order energy is denoted by A. 
The matrix fi is a ZL x ZL matrix which represents the operator 'Ifleg in the subspace of the 
degenerate ground states. For example, one of the diagonal elements of fi is given by 

(-1 -z+3 -4'..I'IfIegl-1-2+3 

L-l nr 

x=o y=I 
= J Z(-I -z +3 -4 .. .ls.r,y . 4 + i . y 1 - 1  -2 +s -4 . . 

"I 

= J E((-* lSf,,,l-~) (-ZI$,~I-Z) + (-ZIS~,~I-Z) (+31S~,y1+s) + . . .) (2.14) 
y=I 

and one of the non-zero off-diagonal elements is given by 

It is apparent that the secular equation (2.13) is equivalent to the eigenvalue equation 
for the S = 1/2 Heisenberg chain: 

(2.16) 

We c a i ~  see in (2.14) that the effective coupling Jew is given by 

We show numerical results for Jdf in figure 4. The value of J& is generally close to unity 
but increases monotonically. In particular, Jeff = J for nl = 3 [Ill. For large nl, the matrix 
element in (2.17) may depend on nr as 121 

(+lS:l+) - nl-@lv = nl-'lz. (2.18) 

Hence we may have Jeff - O(nro). 

chain with the coupling Jeff that the energy gap behaves as 
As we mentioned in (2.4) and (2.7), it is known [14] for the antiferromagnetic Heisenberg 

Comparing this with (2.12), we arrive at the conclusion 

(2.19) 

(2.20) 

3. Perturbational derivation of the scaling ansatz 

In this section, we describe a perturbational calculation which yields the scaling form (2.1). 
This was briefly reported in [PI. 
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Figure 5. A schematic view of the low-lying energy s p s r ”  of the S = 112 antiferromagnetic 
Heisenberg chain. 

3.1. Zeroth order of J I / J  

Let us first describe the energy spectrum for J J J  = 0. At this point, we have nr number 
of the S = 112 Heisenberg chains independent of each other. The spectrum of each chain 
is given [14] as figure 5. Let Is,) denote the singlet ground state of the yth leg, and let 
IMy) = Illy), IOy), I-ly)} denote the triplet of the first excited states. The energy of the 
singlet ground state is written in the form 

where €0 = 1; - In2 is the exact ground-state energy density [5], vs = x/Z is the sound 
velocity as before, and c = 1 denotes the central charge. The energy gap to the triplet states 
is given by 

where q = 1 is Fisher’s correlation exponent as before. 
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The ground state of the whole system is given by the direct product of the singlet states 
as 

nr 

I@$)) = @Isy)  
y=1 

with the energy 

The first excited states have the 3nf-fold degeneracy: 

(3.3) 

;#Y, 

The energy gap to these excited states is the same as in (3.2). 

3.2. First-order perturbation of JA JJ 

Now we calculate the first-order perturbation with respect to 7fmn8. The firs-order energy 
of the ground state is given by 

E $ ) = ( $ (  g? I %Wgl@$)) 

= o  (3.6) 
because we have 

(s[s:ls) = (sls:ls) =o. (3.7) 
In order to obtain the first-order energy of the excited state, we have to construct the 

secular equation, because the zeroth-order first excited states are degenerate. We concentrate 
on the sector cy My = 1. The ground state of this sector gives the perturbed first excited 
state, because the perturbed energy spectrum would be similar to that in figure 5 owing to 
the SU(2) symmetry. The following nr states are of this sector: 

(YI = 1,2, . . . , nt). (3.8) 

Y#YT 

We immediately have 

( ( Y d l 7 f N " g b ) )  = 0 unless I Y I  - Y Z I  = 1 

The non-zero matrix elements are 

= JLa (y = 1.2, . . . , y - 1) 

and their conjugates. Here the coefficient a is defined by 

a- fLl(slSJl)l2 

(3.9) 

(3.10) 

(3.11) 
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(The x dependence of the matrix element (slSJ1) appears only in the phase factor in the 
form e*x, and hence the absolute value is independent of x . )  The secular equation for the 
first-order energy of the excited state is thereby written in the form 

N Hatano and Y Nishiyam 

= 0. (3.12) 

This is equivalent to the one-dimensional tight-binding model under the free boundary 
condition; the triplet state hops from a ladder to a neighbouring ladder with the hopping 
amplitude J la .  This model is exactly solvable [151. The zeroth-order wavefunction and 
the fist-order energy are obtained in the forms 

mn 
n1+ 1 

EA:) = -2Jla cos - 

for m = 1.2, . . . , 111. The state with m = 1 gives the lowest energy. 
We thereby obtain the energy gap up to the first order of J l / J  as 

2xa cos - 
n r + 1  " >  A E  (e - 

L 2  

(3.13) 

(3.14) 

(3.15) 

where.x = L J J J  as before. 

we show analytically and numerically that a = O(Lo). 

Heisenberg chain. Let us consider the Hamiltonian with a transverse field at the origin: 

We are in position to estimate the size dependence of the coefficient a. In the following 

We first show that the coefficient a is proportional to the transverse susceptibility of the 

After the standard calculation, we have 

(3.16) 

(3.17) 

(3.18) 

where the angular brackets (. . .),, denote the expectation value with respect to the ground 
state of (3.16). AEn is the excitation energy of the excited state I@"), and 

e-ii\cns;e&n. (3.19) 

The most dominant of the excited states 1@,J is IS = 1, SL = f l )  with the energy gap (3.2), 
or A E  - L-'. Hence the expression (3.17) is approximately rewritten as 

4a 
xoo - H2' 

(3.20) 
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On the other hand, a field-theoretic description [16] yields 
1 

392 I 

(3.21) 

Thus the expression (3.18) is a dimensionless quantity: xw = O(Lo). We thus arrive at the 
conclusion a = O(Lo). There m y  be logarithmic corrections to this size dependence. 

We also calculated the coefficient Q in (3.11) numerically for L < X see figure 6. The 
logarithmic plot reveals that the coefficient actually behaves as 

(3.22) 

(s;s;(& ;. 

a - (1nL)0.6* = o(L'). 

L 

Figure 6. The size dependence of the quantity (1 appears to be of the form a - (InLY. The 
full line connects the last two data points with the slope o 2 0.68. 

3.3. Order estimation of higher-order perturbations 

We next derive the approximate second-order energy of the ground state. The second-order 
perturbation is given by the formula 

The most dominant excited states are the 3(n1- 1) states 

(3.23) 

with y1 = 1,2, . . . , nr - 1. The energy gap AEn to these states is twice as large as in (3.2): 

(3.25) 

The numerator of (3.23) gives the factor a2 for each of the states (3.24). Hence the second- 
order energy of the ground state is 

(3.26) 
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Although it is complicated to calculate the second-order energy of the first excited state 
(3.13). we can see that the size dependence is the same as in (3.26): 

We thereby have 

I A E  - -+(Y,M +r~z(ax)* L 2  rz 
(3.27) 

(3.28) 

where x = L JL/ J ,  and (11 and crz are constants. Since a is of the order of Lo, the expression 
(3.28) is consistent with the scaling form (2.1). 

It is generally difficult to calculate higher-order permrbation explicitly. However, it is 
possible to estimate the size dependence roughly [17]. The kth-order energy is approximately 
given by 

~ ( ~ ~ l ~ ~ ~ ~ l ~ i ) ( ~ z I ~ ~ ~ p l ~ ~ )  
[*I 

... ( ~ k - i I ~ ~ " p l ~ ~ ) [ ( A E i ) ( A E z ) . . . ( A E y - ~ ) l -  l .  (3.29) 
We may estimate the dimensionality of the operator Xmnp at LJj .  x [SIz - J I ,  because 
the magnetic operator S of the antiferromagnetic Heisenberg chain has the dimensionality 
[SI = L-81" = L-'I2 [2]. (This rough estimate is consistent with the estimation 
a = O(Lo).) On the other band, each energy denominator AE is of the order of JIL ,  
because the Heisenberg chain is critical. We thereby have the rough estimate 

Hence the energy gap may be given by the form 
J 

A E - - ~ C L ~ X ~  
L k  

(3.30) 

(3.31) 

with appropriate coefficients (q]. This is consistent with the scaling ansatz (2.1). 
We have not confirmed that the above perturbational expansion is convergent. However, 

the numerical results in figure 1 do suggest that the series converges at least over a finite 
region of x = LJj . /J .  

4. Summary 

In the present paper, we have introduced the finite-size scaling form of the energy gap of 
the antiferromagnetic Heisenberg ladder models: 

AE(L)IJ  N L - ' & L J ~ I J ) .  (4.1) 
We confirmed this scaling form numerically as well as by means of perturbation theory. On 
the basis of the scaling theory, we discussed the criticality of the ladder models in a unified 
way. The difference between the ladders with even nf and with odd nr was attributed to 
the different asymptotic behaviour of the scaling function in the limit L J I / J - +  00. 

For even y, the energy gap develops in the form AE - JL. The whole region of 
J j .  > 0 is a disordered phase with a unique ground state. mis ground state is reduced to 
a set of independent singlets in the limit J l / J  -+ CO.) We estimated for nl= 2 the critical 
amplitude of the energy gap and the correlation length around the critical point J l / J  = 0. 
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For odd nl, on the other hand, the whole region of JL > 0 is the critical line. The 
energy gap vanishes in the form A E  - L-' for any .TI. The critical line is controlled by 
the S = 1/2 antiferromagnetic Heisenberg chain which is obtained in the limit J I / J  + w. 
The central charge of the phase is hence unity. 
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